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Isolated resonances in conductance fluctuations and hierarchical states
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We study the isolated resonances occurring in conductance fluctuations of quantum systems with a classi-
cally mixed phase space. We demonstrate that the isolated resonances and their scattering states can be
associated with eigenstates of the closed system. They can all be categorized as hierarchical or regular,
depending on where the corresponding eigenstates are concentrated in the classical phase space.
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I. INTRODUCTION

The classical dynamics of a scattering system is reflec
in the transport properties of its quantum mechanical ana
A prominent example in quantum chaos is the universal c
ductance fluctuations exhibited by a scattering system w
classically completely chaotic dynamics@1#. Generic sys-
tems, however, are neither completely chaotic nor integra
but show chaotic as well as regular motion@2#. The chaotic
dynamics is strongly influenced by the presence of island
regular motion; in particular, one finds a trapping of chao
trajectories close to regular regions with trapping times d
tributed according to power laws@3#. A semiclassical analy-
sis revealed that conductance fluctuations of generic sca
ing systems have corresponding power-law correlations@4,5#
and most interestingly that the graph of conductance vs c
trol parameter is a fractal@5#. Fractal conductance fluctua
tions have indeed been observed experimentally in semi
ductor nanostructures@6,7#, as well as numerically@8#.

Surprisingly, for the cosine billiard@9,10#, a system with a
mixed phase space and power-law distributed classical t
ping times, a recent numerical study did not show frac
conductance fluctuations@11#. Instead, sharp isolated res
nances were found with a width distribution covering seve
orders of magnitude. Only about one-third of them can
related to quantum tunneling into the islands of regular m
tion @12#, while the rest remained unexplained. It was la
shown that conductance fluctuations for mixed syste
should in general show fractal fluctuations on large sca
and isolated resonances on smaller scales@13#. The isolated
resonances in the scattering system were conjectured t
related to a subset of eigenstates of the closed sys
namely, hierarchical states@14# concentrating in the chaoti
component close to the regular regions and regular st
concentrating within the islands of regular motion@12#. This
type of behavior was obtained for a quantum graph that m
eled relevant features of a mixed phase space@13#.

The purpose of the present paper is to establish the or
of all isolated resonances for a system with a mixed ph
space. To this end, we study the cosine billiard for suita
parameters in a threefold way:~i! as a quantum scatterin
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system,~ii ! as a closed quantum system, and~iii ! its classical
phase-space structures. We find that the resonances
scattering states and corresponding eigenstates of the c
system that are concentrated in the hierarchical and reg
parts of phase space. The number of resonances of each
is directly related to the corresponding volumes in the cl
sical phase space. Each resonance width is quite well
scribed by the strength of the corresponding eigenfunctio
the billiard boundary. Exceptions are shown to arise from
presence of avoided crossings in the closed system.
demonstrated that the simultaneous appearance of fra
conductance fluctuations and isolated resonances, as
served in a quantum graph model@13#, would for our system
with a mixed phase space require much higher energ
These are currently computationally inaccessible.

In the following section, we define the model we use
study the relation between the scattering resonances an
eigenstates of the corresponding closed system. Our m
results for the classification of resonant scattering states
corresponding eigenstates of the closed system into hie
chical and regular are presented in Secs. III and IV. The r
of partial transport barriers is analyzed in Sec. V. In Sec.
we discuss the effect of avoided crossings on the assignm
of resonances of the open billiard to eigenstates of the clo
system and Sec. VII gives a summary of the results. Fina
the Appendix contains some details of the numerical me
ods employed in the present work.

II. THE MODEL

We study the cosine billiard@9,10#, either closed or with
semi-infinite leads attached. The boundaries of the billi
are hard walls~i.e., Dirichlet boundary conditions! at y50
and

y~x!5W1
M

2 F12cosS 2px

L D G ~1!

for 0<x<L @see Fig. 1~a!#. In the open billiard two semi-
infinite leads of widthW are attached at the openings atx
50 andx5L, while in the closed billiard the openings ar
©2002 The American Physical Society11-1
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closed by hard walls. The classical phase-space structure
be changed by varying the ratiosW/L and M /L. For M /L
50 the dynamics is integrable and, for example, forM /L
51/2 andW/L51 the dynamics appears to be ergodic~at
least the islands of regular motion, if any, are very small! @9#.

In the present work, we use the same parameters a
Ref. @11#, namely,W/L50.18 andM /L50.11, for which the
I- and M-shaped orbits depicted in Fig. 1~a! are stable. The
corresponding Poincare´ section is shown in Fig. 1~b!. We use
Poincare´-Birkhoff coordinates (s,p), wheres is the arclength
along the upper boundary of the billiard with lengthL8
'1.029L andp is the projection of the unit momentum ve
tor after reflection on the tangent at the points.

Quantum mechanically, for a given wave numberkF the
numberN of transmitting modes in a lead of widthW is the
largest integer withN<kFW/p. We measure energies i

FIG. 1. ~a! The cosine billiard with semi-infinite leads~short
dashed lines! and hard walls for closing the system~dotted lines!
for W/L50.18 and M /L50.11. Also shown are the two mos
prominent stable periodic orbits for these parameters~long dashed
lines!. ~b! Poincare´ section of some regular and one chaotic orbit
the above parameters in Poincare´-Birkhoff coordinates p vs
arclengths along the upper boundary of the billiard. A major islan
at (s,p)5(L8/2,0) around the elliptic I-shaped orbit and fou
smaller islands surrounding the M-shaped orbit can be seen.
01621
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units of the energyE05\2p2/(2mW2) of the lowest mode
in such a lead, i.e.,E5\2kF

2/(2mE0)5(kFW/p)2>N2. The
larger the numberN of modes is, the more details of th
classical phase space can be resolved by quantum mecha
At the same time the computational effort increases asN4

and we compromise, as in Ref.@11#, on the case ofN545
transmitting modes in the energy rangeEP@2026,2100#.

III. RESONANCES AND SCATTERING STATES

Resonances in the scattering system, which have been
served as isolated features in conductance fluctuations@11#,
were identified by isolated peaks in the Wigner-Smith tim
delayt of the system. The time delay is given by

t5
2 i\

2N
Tr~S†dS/dE!, ~2!

where 2N is the dimension of theS matrix. The calculation
of Sandt was already outlined in Ref.@11# and is presented
in greater detail in the Appendix.

In Fig. 2 we show the Wigner-Smith time delayt @in units
of \/E052mW2/(\p2)# for EP@2026,2100#. The isolated
resonances found in Ref.@11# are clearly seen. Each isolate
resonanceEres,i has a Breit-Wigner shape

t i~E!5t i

G i
2/4

~E2Eres,i !
21G i

2/4
, ~3!

with t iG i52/N. Note that the heightst i and the correspond
ing widthsG i of the individual resonances cover several o
ders of magnitude.

In order to elucidate the nature of the resonances,
calculated the scattering states inside the open billiard. F
given configuration of waves incoming in both leads, know
edge of theSmatrix allows the determination of the outgoin
waves and hence the wave function amplitudes at the op
ings of the billiard. Since theS matrix is defined between
asymptotic, propagating modes, this procedure neglects
contribution of evanescent modes in the leads in the vicin
of the billiard. The wave function amplitudes at the openin
can then be used as boundary conditions for the solutio
the Schro¨dinger equation inside the billiard. For the e
amples of scattering states presented below, we occupied
tate
els
lar
FIG. 2. Wigner-Smith delay timet vs energy
E. For each resonance a corresponding eigens
of the closed system was found and the lab
indicate whether it is concentrated in the regu
~r! or hierarchical~h! region of phase space.
1-2
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FIG. 3. Resonant scattering states~top row! and Husimi projections~bottom row! onto the classical Poincare´ section with KAM tori
~solid lines! and a partial transport barrier~dashed line!. Two examples at resonance energies 2029.172~left! and 2041.109~right! are shown.
They are concentrated in the regular and the hierarchical region of phase space, respectively. For the representation of the scatt
a superposition with equal weight’s of the ten topmost modes incoming from the left is shown.
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ten topmost modes incoming from the left with equal amp
tudes. Similar pictures were obtained for other bound
conditions.

For the comparison of the scattering states with the c
sical phase-space structures we have calculated Husimi
jectionsHsc(s,p). Similar to the case of closed billiards~see
Sec. IV!, we define these by the projection of the scatter
state onto a coherent state on the upper boundary of
billiard,

Hsc~s,p!5 z^]ncufg
coherent~s,p!& z2 ~4!

5U E
0

L8
ds8]nc* ~s8!eikp(s82s)2(1/2)k(s82s)2U2

,

~5!

with k5AEp/W. Here]nc(s)5n(s)•¹c„q(s)… is the nor-
mal derivative of the scattering state on the upper bound
n(s) is the normal vector andq(s) is the position of the
boundary as a function of arclengths. Note that these Husim
projections are not normalized and are influenced by
openings over a range of a few Fermi wavelengths. A
01621
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they do not include the full billiard boundary and therefo
no periodization of the coherent state has been used.

As a first example, we present in Fig. 3 on the left t
scattering state at an energy of approximately 2029.172,
center energy of the sharpest observed resonance. Obvio
the scattering state is associated with the I-shaped peri
orbit. The wave function amplitude is concentrated near
orbit and the Husimi projection concentrates predominan
inside the central stable island of the classical phase sp
For comparison, we present in Fig. 3 on the right the sc
tering state at energy 2041.109. The width of the resona
at this energy is about 63107 times larger than the width o
the sharpest resonance. Evidently, this resonance is no
lated to the stable islands in phase space. In contrast
comparing with the superimposed Kolmogorov-Arnol
Moser~KAM ! tori of the Poincare´ section and a partial trans
port barrier surrounding the island hierarchy~see Sec. V!, we
see that the Husimi projection is concentrated in the hie
chical region between the islands and a partial transport
rier.

As scattering states allow a great variability in the boun
ary conditions, e.g., the incoming modes, we do not use th
for a detailed analysis of the isolated resonances. Instead
s

FIG. 4. Eigenfunctions~top

row! and Husimi representation
~bottom row! of a regular state
(56862, left! and a hierarchical
state (57202, right! corresponding
to the scattering states of Fig. 3.
1-3
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BÄCKER, MANZE, HUCKESTEIN, AND KETZMERICK PHYSICAL REVIEW E66, 016211 ~2002!
consider the corresponding eigenstates of the closed sy
in the next section.

IV. RESONANCES AND CORRESPONDING EIGENSTATES

In this section we want to demonstrate that the isola
resonances of the conductance fluctuations and their sca
ing states have corresponding eigenstates of the closed
liard. In particular, we will show thatall these eigenstates ar
concentrated in the hierarchical and regular part of ph
space, as was conjectured in Ref.@13#. This allows a labeling
of all isolated resonances appearing in Fig. 2.

For the closed system the eigenvalues and eigenfunct
are computed using the boundary element method; see,
@15# and references therein. Since the cosine billiard is sy
metric with respect to the axisx5L/2, the eigenstates hav
definite parity P51,2. The actual calculations are pe
formed for the desymmetrized billiard with either Dirichl
or Neumann boundary conditions on the symmetry a
yielding the antisymmetric (P52) and symmetric (P5
1) states, respectively. We label thenth eigenstate of parity
P by nP. The mean level spacingD is determined by the are
A5L(W1M /2) of the billiard using Weyl’s formulaD/E0
5(4p\2/2mA)/E050.176.

We present in Fig. 4 the two eigenstates correspondin
the scattering states shown in Fig. 3. For each state, we s
the eigenfunction densityucn(q)u2 and the corresponding
Husimi representationHn(s,p) ~see, e.g.,@16,17#!. The state
56862, displayed on the left of Fig. 4, differs in energy b
about 0.01D from the sharpest observed resonance with
ergy 2029.172. Note that this energy difference is of
order of the accuracy to which our resonance energies
eigenvalues are calculated. On the right hand side of Fig
a hierarchical state is displayed. Its energy differs from
resonance at energy 2041.109 by about 0.1D. This shift of
the resonance energy from the eigenenergy of the closed
tem is due to the opening of the system by attaching
leads. As for the scattering states, we have superimpo
some KAM tori onto the Husimi representations of Fig. 4.
addition, a partial transport barrier surrounding the isla
hierarchy is shown~see next section!.

Now we want to associate all resonances of the scatte

FIG. 5. Difference of eigenstate energyEev and resonance en
ergy Eres in units of the mean level spacingD vs G/D. The devia-
tions increase withG.
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system with widthG at energyEres with an eigenstate of the
closed billiard with energyEev. We use a Husimi represen
tation Hn(s,p) on the Poincare´ section to determine the re
gion in which an eigenstate localizes. We introduce the qu
tity

hn5E
2W

0

dsE
21

1

dpHn~s,p!, ~6!

which integrates the Husimi distribution over the left boun
ary of the billiard~not shown in Fig. 4! with the normaliza-
tion of the Husimi distribution chosen such th

*2W
L8/2ds*21

1 dpHn(s,p)51. This quantity gives an estimat
of how strongly a state of the closed system will couple
the leads in the scattering system and should be roug
proportional toG. This allowed us to find, for each of the 5
resonances withG<D/2, a state withEev'Eres and with h
'G. Figures 5 and 6 show the differenceEev2Eres in units
of the mean level spacingD and the approximate proportion
ality of h andG, respectively. Clearly, larger differences a
pear for biggerG, but still a clear identification is possibl
~see Sec. VI!. This assignment also works the other w
around, as of the 46 eigenstates with the smallest value
h, we can identify 40 with isolated resonances, missing o
the six regular eigenstates quantized most deeply in the
tral island of phase space, as discussed below.

For the 54 resonances with widthG less than half a mean
level spacing, we analyze the structure of the correspond
eigenstates. We find that 17 states can be categorized as
lar states, as their Husimi representations are concentr
inside the five major stable islands in phase space. Of th
states, seven are associated with the I-shaped orbit and
with the M-shaped orbit. While we observe all states in t
energy interval associated with the M-shaped orbit, six f
ther eigenstates are concentrated near the center of the
tral stability island are not resolved as resonances. As th
are the innermost states in the island, we expect them
couple more weakly to the leads and their resonance wid
to be much smaller than the sharpest observed resona

FIG. 6. The strengthh of an eigenstate at the left boundary v
the resonance widthG of the corresponding resonance. An appro
mate proportionality can be seen.
1-4
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Apparently, these resonances are so narrow that we were
able to find them, given our current numerical accuracy, e
knowing their approximate energy from the eigenvalues.

The remaining 37 resonances are not related to reg
states, but the Husimi representations of their correspon
eigenstates have large intensity in the region between
regular islands and the partial transport barrier and a m
weaker intensity in the rest of the chaotic region. It should
noted that in the studied energy range accessible to our m
ods the wavelength is of the order of the distance betw
regular islands and the partial transport barrier. Therefore
eigenstates look either like regular states concentrated
side the island@18# or similar to scarred states on a hype
bolic orbit close to the island@19#. For higher energies the
would show the true properties of hierarchical states,
similar to a chaotic state, but restricted to the hierarch
region@14#. We therefore classify these states as hierarch
states.

In Fig. 2 we have labeled the resonances byr and h ac-
cording to our classification of the corresponding eigensta
as regular and hierarchical, respectively. This demonstr
that the origin ofall isolated resonances is hierarchical
regular eigenstates of the closed system.

V. PARTIAL TRANSPORT BARRIERS

Classical transport in the chaotic part of phase spac
dominated by partial barriers@20–24#. They are formed by
cantori as well as by stable and unstable manifolds. Suc
partial transport barrier coincides with its iterate, with t
exception of so-called turnstiles where phase-space vol
is exchanged between both sides of the partial barrier.
have constructed partial barriers using the methods descr
in Ref. @20#. The fluxesF are determined from the lengthl
of the maximizing and minimax orbits, according to

F5\kFu l maximizing2 l minimaxu ~7!

5\pAEu l maximizing2 l minimaxu/W. ~8!

Quantum mechanically, partial transport barriers w
fluxes up to the order of\ divide the chaotic part of phas
space into distinct regions with chaotic and hierarchi
eigenfunctions are concentrated mainly on one or the o
side@14#. We found that the partial barrier with smallest flu
that surrounds the main island and the four neighboring
lands can be constructed from the stable and unstable m
folds of the period-4 hyperbolic fixed points. Each of its tw
turnstiles has for our largest energyE52100 a flux 1.06\.
Further outside are many other partial barriers with o
slightly bigger fluxes. As an example, we show in Figs. 3 a
4 the partial barrier constructed from an unstable perio
orbit with winding number 5/23, which is an approximant
the most noble irrational between winding numbers 1/4 a
1/5. It has a flux 1.65\.

A check on the validity of our identification of regular an
hierarchical states is provided by a comparison of their nu
bers to the corresponding relative volumes in phase space
this end, we calculate the volume of the tori associated w
stable periodic orbits,Vr , and the chaotic phase-space vo
01621
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ume inside the partial transport barrier,Vh . We find Vr and
Vh to cover 5.9% and 8.5% of the energy shell, respectiv
From the total number of eigenstates in the energy inter
N5426, we get for 23~1716! regular and 37 hierarchica
states relative fractions of 5.4% and 8.7%, respectively
good agreement with the volumes of the associated reg
in phase space.

The absence of fractal conductance fluctuations in
system now has a clear explanation. According to Ref.@13#
for fractal fluctuations to occur a hierarchy of partial tran
port barriers with fluxes larger than\ must exist. For the
energies studied we find that even the outermost partial
riers surrounding the hierarchical phase-space structure
fluxes of the order of\. This causes a quantum dynamic
decoupling of the chaotic part connected to the leads fr
the entire hierarchical part. As the hierarchical region is
semiclassical origin of fractal fluctuations, they are not o
served. For much higher energies only, the hierarchy of p
tial transport barriers would have an outer region with flux
larger than\, leading to fractal conductance fluctuation
The inner region of this hierarchy with fluxes smaller than\
has now a smaller phase-space volume. Still, together w
the regular regions it will cause isolated resonances
smaller scales than the fractal fluctuations. Unfortunat
this energy regime is currently computationally inaccessi
for the studied system.

Power laws in the distribution of resonance widths and
the variance of conductance increments had been observ
Ref. @11#, apparently reflecting the classical dwell time e
ponent. They were related to the resonances below the m
level spacing. For these resonances we have now dem
strated that they arise due to hierarchical and regular sta
This allows us to apply the arguments of Ref.@13# about the
resonance width distribution of hierarchical states. They le
to the conclusion that these apparent power laws come f
broad transition regions to asymptotic distributions that
unrelated to the classical dwell time exponent.

VI. AVOIDED CROSSINGS

While for most resonances and corresponding eigenst
the parametersh andG are of the same order of magnitud
for some statesh exceedsG by up to two orders of magni-
tude. This phenomenon can be understood as an effec
avoided level crossings in the closed system. In Fig. 7~a! we
show as an example the dependence of the energy of s
57362 and 57372 as a function of the parameterM /L for the
narrow range 0.109 99<M /L<0.110 01, displaying the typi-
cal features of an avoided crossing. A comparison of
associated Husimi representations shows that the s
57362 and 57372 do indeed exchange their character fro
chaotic to regular and from regular to chaotic, respective
showing a superposition atM /L50.11. Upon opening the
system, the chaotic state couples much more strongly to
leads as compared to the regular one. Consequently, in
complex energy plane of the scattering system there is
longer an avoided crossing. The regular state leads to
isolated resonance with an almost linear energy depend
on M /L and the phase-space signature of the regular s
1-5
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@middle row in Fig. 7~b!#. It closely follows the expected
energy dependence of the regular state in the closed syst
it had not made an avoided crossing with the chaotic s
@Fig. 7~a!#.

Another example of an avoided crossing is given by st
58012 with an eigenvalue about 0.5D less than the resonanc
position ~see the lower right corner of Fig. 5! and the state
58022, with an eigenenergy about 1.4D above the resonanc
energy. Both states show similar Husimi representations
haveh values exceedingG by about a factor of 10.

In all the cases whenh drastically exceedsG a closer look
at these eigenstates reveals that they are superpositio
regular or hierarchical states with chaotic states. They
due to avoided crossings and the chaotic part leads to a c
paratively large value ofh. In contrast, in the open system
no avoided crossing occurs in the complex energy plane
the resonance widthG is unaffected.

FIG. 7. ~a! Energies of states 57362 and 57372 ~solid lines!
showing an avoided crossing under variation ofM /L. The energy of
the only isolated resonance in this energy range~dots connected by
a dashed line! follows the regular state of the closed system. T
slight offset in the resonance energy is within the systematic
merical error of the numerical method.~b! The Husimi representa
tions for state 57372 ~top row!, the scattering state~middle row!,
and eigenstate 57362 ~bottom row! are shown for M /L
50.10999,0.11,0.11001~left to right!. For the eigenstates on
clearly sees the typical exchange of the structure while passing
avoided crossing, whereas the scattering state is not affected.
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VII. CONCLUSION AND OUTLOOK

We demonstrate a clear correspondence of the isol
resonances observed in the transport properties of the o
cosine billiard to hierarchical and regular eigenstates of
closed billiard. We can identify all resonances with widt
less than half of the mean level spacing. The classification
resonances into a hierarchical or regular origin yields nu
bers in agreement with the relative phase-space volumes
a quantitative level, we find a roughly linear relation betwe
the widths of the isolated resonances and the weights of
associated eigenstates at the part of the boundary wher
leads are attached. States with unusually large weights ca
attributed to avoided crossings with chaotic eigenstates.

We find that the island hierarchy is separated from
chaotic part of phase space by partial transport barriers w
fluxes of the order of\. This supports the notion that th
absence of fractal conductance fluctuations in the curre
accessible energy range is due to the quantum dynam
decoupling of the hierarchical part of phase space from
chaotic part connected to the external leads.

The simultaneous appearance of isolated resonances
fractal fluctuations, beyond the quantum graph model stud
in Ref. @13#, remains to be demonstrated numerically or e
perimentally for a system with a mixed phase space. Num
cally, the challenge is the observation of fractal fluctuatio
of the conductance, which go beyond one order of magnit
@25#. This requires calculations with a drastically increas
number of modes, the use of improved techniques like
modular recursive Green’s function method@26#, and the
search for suitable billiard systems where the turnstile flu
across partial barriers are particularly large. Isolated re
nances will easily appear as soon as the parameter is va
on a sufficiently small scale. We note that fluctuations of
quantum staying probability, which can be fractal@8#, cannot
show isolated resonances. Similarly, we expect no app
ance of isolated resonances within the fractal fluctuati
observed in recent studies@27#, as they are unrelated to
classical mixed phase space.

On the experimental side, fractal conductance fluctuati
have been observed@6,7# and also isolated resonances co
ing from regular regions have recently been reported@28#.
The simultaneous appearance of both types including
lated resonances from hierarchical regions requires one t
far enough into the semiclassical regime, i.e., to quant
dots with dimensions bigger than 1mm, as in Ref.@6#. At
the same time the phase coherence time must be l
enough to resolve isolated resonances of a given width a
of course, the parameter, typically a magnetic field, must
varied on a sufficiently fine scale. Given the experimen
limitations it would be helpful if an optimal form for such
quantum dot could be provided by theoretical consideratio
This seems to be quite difficult at present, since the diff
ence in the lithographic shape and the actual potential ex
rienced by electrons has dramatic consequences on the
tron dynamics and thus on the scales over which fra
fluctuations and isolated resonances appear.
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APPENDIX: HYBRID REPRESENTATION AND
RECURSIVE GREEN’S FUNCTION METHOD

In this appendix we discuss the numerical method to
termine the scattering matrixS and the time delayt. The S
matrix of a symmetric scattering system can be expresse
terms of the Green’s functionG:

S5S r t 8

t r 8
D , ~A1!

t85tT, ~A2!

r 85r , ~A3!

tab52 i\AvavbGab~0,L !, ~A4!

r ab5dab2 iAvavbGab~0,0!, ~A5!

where

va5F 2

m S E2
\2

2mW2
a2p2D G 1/2

~A6!

is the velocity of modea and

Gab~x,x8!5E
x
dyE

x8
dy8fa* ~y;x!fb~y8;x8!

3G1~r ,r 8;E! ~A7!

is the projection of the retarded Green’s functi
G1(r ,r 8;E) onto the local transverse modes

fa~y;x!5A 2

W~x!
sinS apy

W~x! D . ~A8!

The Green’s function can be calculated recursively. Expa
ing the Hamiltonian

H5
\2

2m S ]2

]x2
1

]2

]y2D ~A9!

in terms of the local transverse modes~A8! and discretizing
in thex direction with a lattice constanta, x5ma, we obtain
the Hamiltonian in hybrid representation@29#

Hh5(
a,m

ua,m&~em
a 12Et!^a,mu2 (

a,b,m
~ tm,m11

ab ua,m&

3^b,m11u1tm11,m
ab ua,m11&^b,mu!, ~A10!

with

em
a 5S a

a

W~ma! D
2

,

01621
3/

-

in

d-

tm,m11
ab 5EtE fa* ~y;ma!fb„y;~m11!a…dy, ~A11!

and Et5\2/(2ma2). In order to recursively calculate th
Green’s function associated withHh , we split the Hamil-
tonian Hh

M11 of a system withm51, . . . ,M11 into two
parts,

Hh
M115H01U, ~A12!

H05Hh
M1(

a
ua,M11&~eM11

a 12Et!^a,M11u,

~A13!

U52(
a,b

~ tM ,M11
ab ua,M &^b,M11u

1tM11,M
ab ua,M11&^b,M u!. ~A14!

Dyson’s equation,

GM115G01G0UGM11, ~A15!

then allows us to calculate the Green’s functionGM11 of
Hh

M11 from GM and

G05~E2H0!215GM1(
a

ua,M11&g0
M11^a,M11u,

~A16!

g0
M115~E2eM11

a 22Et!
21.

We start the recursion withM51 at the left edge of the
closed billiard and iterate to the right edge atM5NL5L/a.
In order to attach the leads, we again split the Hamilton
according to Eq.~A12!, but this timeH0 contains the Hamil-
tonian of the closed billiard and the semi-infinite leads. In t
leads,em

a 5(aa/W)2 and tm,m11
ab 5dabEt . U is the coupling

between the billiard and the semi-infinite leads. The Gree
function for the leads is known analytically@30#.

The recursion scheme is exact for an infinite numberNL
of slices and an infinite numberNC of transverse modes. Fo
numerical calculations, both numbers have to be kept fin
We find that the deviations from the asymptotic values f
e.g., the widthG of a resonance scale as

G~NC ,NL!5G1bNC
241cNL

22 , ~A17!

with positive numerical coefficientsb andc. For our choice
of parameters,N545 transmitting modes in the leads, th
valuesNC5108 andNL512 000 give an accuracy of abou
1% for the resonance width. The corrections to the posit
of the resonance have the same functional form as in
~A17!; however, they can be either positive or negative,
pending on the values ofNC andNL . This explains the slight
offset of the resonance energies with respect to the eige
ergies of the closed system seen in Fig. 7~a!.
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Bäcker, R. Schubert, and P. Stifter, J. Phys. A30, 6783~1997!.
@11# B. Huckestein, R. Ketzmerick, and C.H. Lewenkopf, Ph

Rev. Lett.84, 5504~2000!; 87, 119901~E! ~2001!.
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