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We study the isolated resonances occurring in conductance fluctuations of quantum systems with a classi-
cally mixed phase space. We demonstrate that the isolated resonances and their scattering states can be
associated with eigenstates of the closed system. They can all be categorized as hierarchical or regular,
depending on where the corresponding eigenstates are concentrated in the classical phase space.
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[. INTRODUCTION system(ii) as a closed quantum system, diid its classical
phase-space structures. We find that the resonances have
The classical dynamics of a scattering system is reflectedcattering states and corresponding eigenstates of the closed
in the transport properties of its quantum mechanical analogsystem that are concentrated in the hierarchical and regular
A prominent example in quantum chaos is the universal conparts of phase space. The number of resonances of each type
ductance fluctuations exhibited by a scattering system witf directly related to the corresponding volumes in the clas-
classically completely chaotic dynami¢4]. Generic sys- Sical phase space. Each resonance width is quite well de-
tems, however, are neither completely chaotic nor integrablescribed by the strength of the corresponding eigenfunction at
but show chaotic as well as regular motig#j. The chaotic the billiard boundary. Exceptions are shown to arise from the
dynamics is strongly influenced by the presence of islands dPresence of avoided crossings in the closed system. It is
regular motion; in particular, one finds a trapping of chaoticdemonstrated that the simultaneous appearance of fractal
trajectories close to regular regions with trapping times disconduct.ance fluctuations and isolated resonances, as ob-
tributed according to power law§]. A semiclassical analy- Served in a quantum graph mod&B], would for our system
sis revealed that conductance fluctuations of generic scatteith a mixed phase space require much higher energies.
ing Systems have Corresponding power_|aW Corre]aﬂ[g@ These are CUrrentIy Computatlonally inaccessible.
and most interestingly that the graph of conductance vs con- In the following section, we define the model we use to
trol parameter is a fractdb]. Fractal conductance fluctua- Study the relation between the scattering resonances and the
tions have indeed been observed experimentally in semicorgigenstates of the corresponding closed system. Our main
ductor nanostructurd$,7], as well as numerically8]. results for the classification of resonant scattering states and
Surprising|y, for the cosine b||||arE9,10], a system with a Corresponding Eigenstates of the closed SyStem into hierar-
mixed phase space and power-law distributed classical traghical and regular are presented in Secs. lll and IV. The role
ping times, a recent numerical study did not show fractaPf partial transport barriers is analyzed in Sec. V. In Sec. VI
conductance fluctuationd1]. Instead, sharp isolated reso- We discuss the effect of avoided crossings on the assignment
nances were found with a width distribution covering severaPf resonances of the open billiard to eigenstates of the closed
orders of magnitude. Only about one-third of them can beSystem and Sec. VIl gives a summary of the results. Finally,
related to quantum tunneling into the islands of regular mothe Appendix contains some details of the numerical meth-
tion [12], while the rest remained unexplained. It was laterods employed in the present work.
shown that conductance fluctuations for mixed systems
should in general show fractal fluctuations on large scales Il. THE MODEL
and isolated resonances on smaller scfl&$ The isolated ] . ) )
resonances in the scattering system were conjectured to be We study the cosine billiarf9,10], either closed or with
related to a subset of eigenstates of the closed Systerﬁ§m|—|nf|n|te Ie{:xds at.tgched. The boundang; of the billiard
namely, hierarchical statd44] concentrating in the chaotic a'® hard wallsi.e., Dirichlet boundary conditionsat y=0
component close to the regular regions and regular statédd
concentrating within the islands of regular motidr2]. This
type of behavior was obtained for a quantum graph that mod- _ M _ 5(@
. y(X)=W+ 1-co
eled relevant features of a mixed phase sga& 2 L
The purpose of the present paper is to establish the origin
of all isolated resonances for a system with a mixed phasér 0<x=<L [see Fig. a)]. In the open billiard two semi-
space. To this end, we study the cosine billiard for suitablénfinite leads of widthW are attached at the openingsxat
parameters in a threefold wagi) as a quantum scattering =0 andx=L, while in the closed billiard the openings are
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a) units of the energyE,=7%2m?/(2mW?) of the lowest mode

) in such a lead, i.eE=%2k2/(2mEy) = (ke W/ 7)2=N?. The

""""" larger the numbelN of modes is, the more details of the
classical phase space can be resolved by quantum mechanics.
At the same time the computational effort increasedNAs

and we compromise, as in R¢fll], on the case oN=45
transmitting modes in the energy range [ 2026,2100.

~

IIl. RESONANCES AND SCATTERING STATES

Resonances in the scattering system, which have been ob-
served as isolated features in conductance fluctuafibtls
were identified by isolated peaks in the Wigner-Smith time
delay 7 of the system. The time delay is given by

ST dE 2
T=5N r( ), 2

0 L2 s L
where AN is the dimension of th& matrix. The calculation
of Sand 7 was already outlined in Reff11] and is presented
in greater detail in the Appendix.

In Fig. 2 we show the Wigner-Smith time delayin units
of AlEy=2mW?/ (A m?)] for Ee[2026,2100. The isolated
resonances found in Rdfl1] are clearly seen. Each isolated
has a Breit-Wigner shape

FIG. 1. (a) The cosine billiard with semi-infinite leadshort
dashed linesand hard walls for closing the systefdotted lineg
for W/L=0.18 andM/L=0.11. Also shown are the two most
prominent stable periodic orbits for these parametiensg dashed
lines). (b) Poincaresection of some regular and one chaotic orbit for
the above parameters in Poincdiekhoff coordinatesp vs
arclengths along the upper boundary of the billiard. A major island reSONanCe es;
at (s,p)=(L'/2,0) around the elliptic I-shaped orbit and four
smaller islands surrounding the M-shaped orbit can be seen. Fi2/4

7i(E)=m ,
(E) (E—Eresj) 2+ 1214

3

closed by hard walls. The classical phase-space structure can
be changed by varying the ratié§/L and M/L. For M/L  with 7,I";=2/N. Note that the heights; and the correspond-
=0 the dynamics is integrable and, for example, ffL  ing widthsT; of the individual resonances cover several or-
=1/2 andW/L=1 the dynamics appears to be ergotht ders of magnitude.
least the islands of regular motion, if any, are very spjall. In order to elucidate the nature of the resonances, we
In the present work, we use the same parameters as talculated the scattering states inside the open billiard. For a
Ref.[11], namelyW/L=0.18 andM/L=0.11, for which the  given configuration of waves incoming in both leads, knowl-
I- and M-shaped orbits depicted in Figal are stable. The edge of theS matrix allows the determination of the outgoing
corresponding Poincasection is shown in Fig.(b). We use  waves and hence the wave function amplitudes at the open-
PoincareBirkhoff coordinates §,p), wheres s the arclength  ings of the billiard. Since thé& matrix is defined between
along the upper boundary of the billiard with lengtH asymptotic, propagating modes, this procedure neglects the
~1.029L andp is the projection of the unit momentum vec- contribution of evanescent modes in the leads in the vicinity
tor after reflection on the tangent at the pasnt of the billiard. The wave function amplitudes at the openings
Quantum mechanically, for a given wave numberthe  can then be used as boundary conditions for the solution of
numberN of transmitting modes in a lead of widiV is the  the Schrdinger equation inside the billiard. For the ex-
largest integer withN<kcW/7. We measure energies in amples of scattering states presented below, we occupied the

10® T T T
T
T
10° - 1
T
r FIG. 2. Wigner-Smith delay time vs energy
10* E. For each resonance a corresponding eigenstate

of the closed system was found and the labels
indicate whether it is concentrated in the regular
(r) or hierarchical(h) region of phase space.
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FIG. 3. Resonant scattering staigsp row) and Husimi projectiongbottom row onto the classical Poincasection with KAM tori
(solid lineg and a partial transport barriedashed ling Two examples at resonance energies 2029(E72 and 2041.109right) are shown.
They are concentrated in the regular and the hierarchical region of phase space, respectively. For the representation of the scattering state:
a superposition with equal weight’s of the ten topmost modes incoming from the left is shown.

ten topmost modes incoming from the left with equal ampli-they do not include the full billiard boundary and therefore
tudes. Similar pictures were obtained for other boundaryno periodization of the coherent state has been used.
conditions. As a first example, we present in Fig. 3 on the left the
For the comparison of the scattering states with the classcattering state at an energy of approximately 2029.172, the
sical phase-space structures we have calculated Husimi préenter energy of the sharpest observed resonance. Obviously,
jectionsH®(s,p). Similar to the case of closed billiargsee  the scattering state is associated with the I-shaped periodic
Sec. IV), we define these by the projection of the scattering@rbit. The wave function amplitude is concentrated near the
state onto a coherent state on the upper boundary of tHerbit and the Husimi projection concentrates predominantly

billiard, inside the central stable island of the classical phase space.
For comparison, we present in Fig. 3 on the right the scat-
H5(s,p) = [(dn] ¢coherenfs NG (4) tering state at energy 2041.109. The width of the resonance
1 'y )

at this energy is about>610’ times larger than the width of
) 2 the sharpest resonance. Evidently, this resonance is not re-
- fL dsf3n¢*(Sf)eikp(s’—s)—(1/2)k(s’—s)2 ) lated to the stable islands in phase space. In contrast, by
0 comparing with the superimposed Kolmogorov-Arnold-
5 Moser(KAM ) tori of the Poincareection and a partial trans-
port barrier surrounding the island hierardisge Sec. Y, we
with k= JE@/W. Here d,,(s) =n(s)- V¢(q(s)) is the nor-  see that the Husimi projection is concentrated in the hierar-
mal derivative of the scattering state on the upper boundaryhical region between the islands and a partial transport bar-
n(s) is the normal vector andj(s) is the position of the rier.
boundary as a function of arclengthNote that these Husimi As scattering states allow a great variability in the bound-
projections are not normalized and are influenced by thery conditions, e.g., the incoming modes, we do not use them
openings over a range of a few Fermi wavelengths. Alsofor a detailed analysis of the isolated resonances. Instead we

e
]
1000000
0

FIG. 4. Eigenfunctions(top
row) and Husimi representations
(bottom row of a regular state
(5686, left) and a hierarchical
state (5720, right) corresponding
to the scattering states of Fig. 3.
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FIG. 5. Difference of eigenstate enery, and resonance en- 10 10 10 10 10 r

ergy E,.s in units of the mean level spacimy vs I'/A. The devia-

tions increase With". FIG. 6. The strengthy of an eigenstate at the left boundary vs

the resonance width of the corresponding resonance. An approxi-

consider the corresponding eigenstates of the closed syste'ﬂ’?te proportionality can be seen.

in the next section. o _ '
system with widthl" at energyE s with an eigenstate of the

IV. RESONANCES AND CORRESPONDING EIGENSTATES  closed billiard with energyEe,. We use a Husimi represen-
tation H,(s,p) on the Poincarsection to determine the re-

In this section we want to demonstrate that the isolategjion in which an eigenstate localizes. We introduce the quan-
resonances of the conductance fluctuations and their scattety

ing states have corresponding eigenstates of the closed bil-
liard. In particular, we will show thadll these eigenstates are 0 1
concentrated in the hierarchical and regular part of phase nnzf dsf dpH,(s,p), (6)
space, as was conjectured in Rdf3]. This allows a labeling Wt
of all isolated resonances appearing in Fig. 2. o S
For the closed system the eigenvalues and eigenfunctioréhich integrates the Husimi distribution over the left bound-
are computed using the boundary element method; see, e.gy of the billiard(not shown in Fig. #with the normaliza-
[15] and references therein. Since the cosine billiard is symtion of the Husimi distribution chosen such that
metric with respect to the axis=L/2, the eigenstates have fE'\ﬁdsfl_lden(s,p)=1. This quantity gives an estimate
definite parity P=+,—. The actual calculations are per- of how strongly a state of the closed system will couple to
formed for the desymmetrized billiard with either Dirichlet the leads in the scattering system and should be roughly
or Neumann boundary conditions on the symmetry axiproportional tol". This allowed us to find, for each of the 54
yielding the antisymmetric F=—) and symmetric P= resonances with'<A/2, a state withE.~E s and with 7
+) states, respectively. We label théh eigenstate of parity ~T'. Figures 5 and 6 show the differenBg,— E, in units
P by nP. The mean level spaciny is determined by the area of the mean level spacinyy and the approximate proportion-
A=L(W+M/2) of the billiard using Weyl's formula\/E,  ality of » andT", respectively. Clearly, larger differences ap-
=(4mh?/2mA)/Ey=0.176. pear for bigger”, but still a clear identification is possible
We present in Fig. 4 the two eigenstates corresponding t@see Sec. \Jl This assignment also works the other way
the scattering states shown in Fig. 3. For each state, we shaavound, as of the 46 eigenstates with the smallest values of
the eigenfunction densityy,(q)|? and the corresponding 7, we can identify 40 with isolated resonances, missing only
Husimi representatiohl ,(s,p) (see, €.9.[16,17)). The state the six regular eigenstates quantized most deeply in the cen-
5686, displayed on the left of Fig. 4, differs in energy by tral island of phase space, as discussed below.
about 0.0A from the sharpest observed resonance with en- For the 54 resonances with widthless than half a mean
ergy 2029.172. Note that this energy difference is of thdevel spacing, we analyze the structure of the corresponding
order of the accuracy to which our resonance energies angigenstates. We find that 17 states can be categorized as regu-
eigenvalues are calculated. On the right hand side of Fig. 4ar states, as their Husimi representations are concentrated
a hierarchical state is displayed. Its energy differs from thenside the five major stable islands in phase space. Of these
resonance at energy 2041.109 by aboutAQ.This shift of states, seven are associated with the I-shaped orbit and ten
the resonance energy from the eigenenergy of the closed sywith the M-shaped orbit. While we observe all states in the
tem is due to the opening of the system by attaching thenergy interval associated with the M-shaped orbit, six fur-
leads. As for the scattering states, we have superimposdber eigenstates are concentrated near the center of the cen-
some KAM tori onto the Husimi representations of Fig. 4. Intral stability island are not resolved as resonances. As these
addition, a partial transport barrier surrounding the islandare the innermost states in the island, we expect them to
hierarchy is showrisee next section couple more weakly to the leads and their resonance widths
Now we want to associate all resonances of the scatterintp be much smaller than the sharpest observed resonance.
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Apparently, these resonances are so narrow that we were noie inside the partial transport barrisf,. We findV, and
able to find them, given our current numerical accuracy, eve,, to cover 5.9% and 8.5% of the energy shell, respectively.
knowing their approximate energy from the eigenvalues. From the total number of eigenstates in the energy interval,
The remaining 37 resonances are not related to regula¥=426, we get for 2317+6) regular and 37 hierarchical
states, but the Husimi representations of their correspondingtates relative fractions of 5.4% and 8.7%, respectively, in
eigenstates have large intensity in the region between thgood agreement with the volumes of the associated regions
regular islands and the partial transport barrier and a much phase space.
weaker intensity in the rest of the chaotic region. It should be The absence of fractal conductance fluctuations in this
noted that in the studied energy range accessible to our metBystem now has a clear explanation. According to RE3]
ods the wavelength is of the order of the distance betweefor fractal fluctuations to occur a hierarchy of partial trans-
regular islands and the partial transport barrier. Therefore thport barriers with fluxes larger thal must exist. For the
eigenstates look either like regular states concentrated ougnergies studied we find that even the outermost partial bar-
side the island18] or similar to scarred states on a hyper- riers surrounding the hierarchical phase-space structure have
bolic orbit close to the islanffl9]. For higher energies they fluxes of the order ofi. This causes a quantum dynamical
would show the true properties of hierarchical states, i.e.decoupling of the chaotic part connected to the leads from
similar to a chaotic state, but restricted to the hierarchicathe entire hierarchical part. As the hierarchical region is the
region[14]. We therefore classify these states as hierarchicademiclassical origin of fractal fluctuations, they are not ob-
states. served. For much higher energies only, the hierarchy of par-
In Fig. 2 we have labeled the resonancesrtandh ac- tial transport barriers would have an outer region with fluxes
cording to our classification of the corresponding eigenstatermrger than#, leading to fractal conductance fluctuations.
as regular and hierarchical, respectively. This demonstrateghe inner region of this hierarchy with fluxes smaller ttan
that the origin ofall isolated resonances is hierarchical orhas now a smaller phase-space volume. Still, together with

regular eigenstates of the closed system. the regular regions it will cause isolated resonances on
smaller scales than the fractal fluctuations. Unfortunately,
V. PARTIAL TRANSPORT BARRIERS this energy regime is currently computationally inaccessible

. ) ) for the studied system.

Classical transport in the chaotic part of phase space is power laws in the distribution of resonance widths and in
dominated by partial barrierf20—24. They are formed by  the variance of conductance increments had been observed in
cantori as well as by stable and unstable manifolds. Such fef. [11], apparently reflecting the classical dwell time ex-
partial transport barrier coincides with its iterate, with theponent. They were related to the resonances below the mean
_exception of so-called turnstilgs where phasejspace _volumgve| spacing. For these resonances we have now demon-
is exchanged between both sides of the partial barrier. Weyrated that they arise due to hierarchical and regular states.
have constructed partial barriers using the methods describeghis allows us to apply the arguments of Ridf3] about the
in Ref.[20]. The fluxes® are determined from the length  resonance width distribution of hierarchical states. They lead
of the maximizing and minimax orbits, according to to the conclusion that these apparent power laws come from

® =11 Ke || maximizing~ | minimand (7)  broad transition regions to asymptotic distributions that are
unrelated to the classical dwell time exponent.

:ﬁﬂ'\/E| l maximizing l minimaxl/W- )

Quantum mechanically, partial transport barriers with
fluxes up to the order of divide the chaotic part of phase ~ While for most resonances and corresponding eigenstates
space into distinct regions with chaotic and hierarchicalthe parameterg andI’ are of the same order of magnitude,
eigenfunctions are concentrated mainly on one or the othdior some states; exceedd” by up to two orders of magni-
side[14]. We found that the partial barrier with smallest flux tude. This phenomenon can be understood as an effect of
that surrounds the main island and the four neighboring isavoided level crossings in the closed system. In Fig) We
lands can be constructed from the stable and unstable marshow as an example the dependence of the energy of states
folds of the period-4 hyperbolic fixed points. Each of its two 5736 and 5737 as a function of the parametst/L for the
turnstiles has for our largest ener@y=2100 a flux 1.06. narrow range 0.109 39M/L <0.11001, displaying the typi-
Further outside are many other partial barriers with onlycal features of an avoided crossing. A comparison of the
slightly bigger fluxes. As an example, we show in Figs. 3 andassociated Husimi representations shows that the states
4 the partial barrier constructed from an unstable periodiG736  and 5737 do indeed exchange their character from
orbit with winding number 5/23, which is an approximant of chaotic to regular and from regular to chaotic, respectively,
the most noble irrational between winding numbers 1/4 andghowing a superposition af/L=0.11. Upon opening the
1/5. 1t has a flux 1.65. system, the chaotic state couples much more strongly to the

A check on the validity of our identification of regular and leads as compared to the regular one. Consequently, in the
hierarchical states is provided by a comparison of their numeomplex energy plane of the scattering system there is no
bers to the corresponding relative volumes in phase space. Tonger an avoided crossing. The regular state leads to an
this end, we calculate the volume of the tori associated withsolated resonance with an almost linear energy dependence
stable periodic orbitsy,, and the chaotic phase-space vol-on M/L and the phase-space signature of the regular state

VI. AVOIDED CROSSINGS
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a) VII. CONCLUSION AND OUTLOOK
E S T T T

We demonstrate a clear correspondence of the isolated

2047.05 | H 1 resonances observed in the transport properties of the open
cosine billiard to hierarchical and regular eigenstates of the
2047.00 closed billiard. We can identify all resonances with widths

less than half of the mean level spacing. The classification of
resonances into a hierarchical or regular origin yields num-
bers in agreement with the relative phase-space volumes. On
a quantitative level, we find a roughly linear relation between
the widths of the isolated resonances and the weights of the
associated eigenstates at the part of the boundary where the
leads are attached. States with unusually large weights can be
: attributed to avoided crossings with chaotic eigenstates.

b) 0:100992 011000 ML 0.11001 We find that the island hierarchy is separated from the
chaotic part of phase space by partial transport barriers with
e fluxes of the order ofi. This supports the notion that the

g = absence of fractal conductance fluctuations in the currently

2046.95

2046.90

2046.85

accessible energy range is due to the quantum dynamical
decoupling of the hierarchical part of phase space from the
chaotic part connected to the external leads.

The simultaneous appearance of isolated resonances and
fractal fluctuations, beyond the quantum graph model studied
< in Ref.[13], remains to be demonstrated numerically or ex-
< perimentally for a system with a mixed phase space. Numeri-
cally, the challenge is the observation of fractal fluctuations
of the conductance, which go beyond one order of magnitude
[25]. This requires calculations with a drastically increased
o> < o< number of modes, the use of improved techniques like the
> £ S modular recursive Green’'s function methf2i6], and the
search for suitable billiard systems where the turnstile fluxes
across partial barriers are particularly large. Isolated reso-

FIG. 7. (a) Energies of states 5736and 5737 (solid lines nances vyll_l easily appear as soon as the parameter is varied
showing an avoided crossing under variatiovbfL. The energy of ona suff|C|ent.Iy small SCF%'G- We_ note that fluctuations of the
the only isolated resonance in this energy rafdps connected by quantum staying probability, which can be frad@J, cannot

a dashed linefollows the regular state of the closed system. TheShOW isolated resonances. Similarly, we expect no appear-

slight offset in the resonance energy is within the systematic nuf’lgCe of dls_olated rteS?ngl_n(ée; W'tht'r'? the fractal |ﬂtjc(;u? tions
merical error of the numerical methoth) The Husimi representa- observed in recent studigg7], as they are unrelated to a

tions for state 5737 (top row), the scattering statémiddle row, CIaSSIC(;I mixed _phase Ispgce% | q f .
and eigenstate 5736 (bottom row are shown for M/L Ont eexperlmenta side, fractal conductance fluctuations

=0.10999,0.11,0.11001left to right. For the eigenstates one Nave been observd®,7] and also isolated resonances com-
clearly sees the typical exchange of the structure while passing tHfd from regular regions have recently been repoft2sl. -
avoided crossing, whereas the scattering state is not affected. ~ 1h€ simultaneous appearance of both types including iso-
lated resonances from hierarchical regions requires one to go
[middle row in Fig. Tb)]. It closely follows the expected far enough into the semiclassical regime, i.e., to quantum
energy dependence of the regular state in the closed systendpts with dimensions bigger than &m, as in Ref[6]. At
it had not made an avoided crossing with the chaotic statfe same time the phase coherence time must be large
[Fig. 7(@)]. enough to resolve isolated resonances of a given width and,
Another example of an avoided crossing is given by stat&f course, the parameter, typically a magnetic field, must be
5801 with an eigenvalue about @Sless than the resonance varied on a sufficiently fine scale. Given the experimental
position (see the lower right corner of Fig) @ind the state limitations it would be helpful if an optimal form for such a
5802, with an eigenenergy about Aabove the resonance quantum dot could be provided by theoretical considerations.

energy. Both states show similar Husimi representations an§niS séems to be quite difficult at present, since the differ-
have 7 values exceeding by about a factor of 10. ence in the lithographic shape and the actual potential expe-

In all the cases when drastically exceedE a closer look rienced by glectrons has dramatic consequences on the elec-
at these eigenstates reveals that they are superpositions {f" dynamics and thus on the scales over which fractal
regular or hierarchical states with chaotic states. They arfuctuations and isolated resonances appear.
due to avoided crossings and the chaotic part leads to a com- ACKNOWLEDGMENTS
paratively large value of. In contrast, in the open system
no avoided crossing occurs in the complex energy plane and R.K. acknowledges helpful discussions with L. Hufnagel
the resonance width is unaffected. and M. Weiss. A.B. acknowledges support by the Deutsche
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1-1. tg”l,ﬁerl:EtJ b (y:ma) dpy;(m+1)a)dy, (All)

APPENDIX: HYBRID REPRESENTATION AND and E,=%2%/(2ma?). In order to recursively calculate the
RECURSIVE GREEN’S FUNCTION METHOD Green’s function associated witH,,, we split the Hamil-

: M+1 y :
In this appendix we discuss the numerical method to defonian Hy "= of a system withm=1, ... M+1 into two

termine the scattering matri® and the time delay. TheS ~ Parts:
matrix of a symmetric scattering system can be expressed in

M+1__
terms of the Green’s functio®: Hy " “=Hgo+U, (A12)
r t’ "
=\, | (A1) Ho=H} +§ la,M+1) (€%, 1+ 2E)(a,M+1],
(A13)
t'=t", (A2)
r=r, (A3) U=—EB (tifwsala,M)(BM+1]
typ=—1h\v,vGap(0L), (A4) +tyf e, M+ 1)(B,M]). (A14)
lap= Oap— 1V 40 sG,p(0,0), (A5)  Dyson’s equation,
where GM+1:GO+ 60UGM+1, (A15)

1/2
(A6) then allows us to calculate the Green’s functiéff ™1 of

HM*! from GM and

V4=

2 h?
—| E— a’m?
m( 2mwWA )

is the velocity of modex and
Y Go=(E—Hg) '=GM+ > |a,M+1)gV " a,M+1],

Gaﬂ(x,X’)=fdyf,dy’¢2(y;x)¢ﬁ(y’;x’) (A16)
X X
XG*(r,r';E) (A7) 90 = (E— ey 2E) L.
is the projection of the retarded Green's functionWe start the recursion witt=1 at the left edge of the
G*(r,r';E) onto the local transverse modes closed billiard and iterate to the right edgeMit=N, =L/a.
In order to attach the leads, we again split the Hamiltonian
2 [ amy according to Eq(A12), but this timeH contains the Hamil-
Paly;X)= W(X)sm W(x) | (A8)  tonian of the closed billiard and the semi-infinite leads. In the

leads, e’ = (aa/W)? andt%{’ml: 846E¢. U is the coupling
The Green’s function can be calculated recursively. Expandbetween the billiard and the semi-infinite leads. The Green’s

ing the Hamiltonian function for the leads is known analyticallg0].
The recursion scheme is exact for an infinite numider
w2 a* 92 of slices and an infinite numbé¢. of transverse modes. For
H= °m ﬁ-’_a_yz (A9)  numerical calculations, both numbers have to be kept finite.

We find that the deviations from the asymptotic values for,

in terms of the local transverse modes8) and discretizing €9+ the widthl" of a resonance scale as

in thex direction with a lattice constamt, x=ma, we obtain

the Hamiltonian in hybrid representati§®9] T(Ne N =T +bNg*+cN?, (A17)
N B with positive numerical coefficients andc. For our choice
Hh:;ﬂ |“’m>(€m+2Et)<a’m|_a§m (thme+1la,m) of parametersN=45 transmitting modes in the leads, the
' o valuesNc=108 andN, =12 000 give an accuracy of about
X(B,m+1] +tﬂfr1,m|a,m+ 1 B,m[), (A10) 1% for the resonance width. The corrections to the position
of the resonance have the same functional form as in Eq.
with (A17); however, they can be either positive or negative, de-

pending on the values & andN, . This explains the slight
offset of the resonance energies with respect to the eigenen-
ergies of the closed system seen in Figp).7

2
€

a_( a
m~ | “W(ma)
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